Integration Points

For several tasks, especially for finite elements and contact, different integration rules are used, which are summarized here. The interval of all integration rules is \(\in [-1,1]\), thus giving a total sum for integration weights of 2. The points \(\xi_{ip}\) and weights \(w_{ip}\) for Gauss rules read:

The following table collects some typical input parameters for nodes, objects and markers:

type/order
point 0
point 1
point 2
point 3
Gauss 1
0



Gauss 3
\(-\sqrt{1 / 3}\)
\(\sqrt{1 / 3}\)


Gauss 5
\(-\sqrt{3 / 5}\)
0
\(\sqrt{3 / 5}\)

Gauss 7
\(-\sqrt{3 / 7 + \sqrt{120} / 35}\)
\(-\sqrt{3 / 7 - \sqrt{120} / 35}\)
\(\sqrt{3 / 7 - \sqrt{120} / 35}\)
\(\sqrt{3 / 7 + \sqrt{120} / 35}\)





type/order
weight 0
weight 1
weight 2
weight 3
Gauss 1
2



Gauss 3
1
1


Gauss 5
\(5 / 9\)
\(8 / 9\)
\(5 / 9\)

Gauss 7
\(1 / 2 - 5 / (3 \sqrt{120})\)
\(1 / 2 + 5 / (3*\sqrt{120})\)
\(1 / 2 + 5 / (3*\sqrt{120})\)
\(1 / 2 - 5 / (3*\sqrt{120})\)

The points \(\xi_{ip}\) and weights \(w_{ip}\) for Lobatto rules read:

type/order
point 0
point 1
point 2
point 3
Lobatto 1
-1
1


Lobatto 3
-1
0
1

Lobatto 5
-1
\(-\sqrt{1/5}\)
\(\sqrt{1/5}\)
1





type/order
weight 0
weight 1
weight 2
weight 3
Lobatto 1
1
1


Lobatto 3
\(1/3\)
\(4/3\)
\(1/3\)

Lobatto 5
\(1/6\)
\(5/6\)
\(5/6\)
\(1/6\)

Further integration rules can be found in the C++ code of Exudyn, see file BasicLinalg.h.