ObjectRigidBody

A 3D rigid body which is attached to a 3D rigid body node. The rotation parametrization of the rigid body follows the rotation parametrization of the node. Use Euler parameters in the general case (no singularities) in combination with implicit solvers (GeneralizedAlpha or TrapezoidalIndex2), Tait-Bryan angles for special cases, e.g., rotors where no singularities occur if you rotate about \(x\) or \(z\) axis, or use Lie-group formulation with rotation vector together with explicit solvers. REMARK: Use the class RigidBodyInertia, see Section Class function: __init__ and AddRigidBody(...), see Section Function: AddRigidBody, of exudyn.rigidBodyUtilities to handle inertia, COM and mass. addExampleImage{ObjectRigidBody}

Additional information for ObjectRigidBody:

  • This Object has/provides the following types = Body, SingleNoded
  • Requested Node type = Position + Orientation + RigidBody
  • Short name for Python = RigidBody
  • Short name for Python visualization object = VRigidBody

The item ObjectRigidBody with type = ‘RigidBody’ has the following parameters:

  • name [type = String, default = ‘’]:
    objects’s unique name
  • physicsMass [\(m\), type = UReal, default = 0.]:
    mass [SI:kg] of rigid body
  • physicsInertia [\(\LU{b}{{\mathbf{j}}_6}\), type = Vector6D, default = [0.,0.,0., 0.,0.,0.]]:
    inertia components [SI:kgm\(^2\)]: \([J_{xx}, J_{yy}, J_{zz}, J_{yz}, J_{xz}, J_{xy}]\) in body-fixed coordinate system and w.r.t. to the reference point of the body, NOT necessarily w.r.t. to COM; use the class RigidBodyInertia and AddRigidBody(…) of exudynRigidBodyUtilities.py to handle inertia, COM and mass
  • physicsCenterOfMass [\(\LU{b}{{\mathbf{b}}_{COM}}\), type = Vector3D, size = 3, default = [0.,0.,0.]]:
    local position of COM relative to the body’s reference point; if the vector of the COM is [0,0,0], the computation will not consider additional terms for the COM and it is faster
  • nodeNumber [\(n0\), type = NodeIndex, default = invalid (-1)]:
    node number (type NodeIndex) for rigid body node
  • visualization [type = VObjectRigidBody]:
    parameters for visualization of item

The item VObjectRigidBody has the following parameters:

  • show [type = Bool, default = True]:
    set true, if item is shown in visualization and false if it is not shown
  • graphicsDataUserFunction [type = PyFunctionGraphicsData, default = 0]:
    A Python function which returns a bodyGraphicsData object, which is a list of graphics data in a dictionary computed by the user function; the graphics elements need to be defined in the local body coordinates and are transformed by mbs to global coordinates
  • graphicsData [type = BodyGraphicsData]:
    Structure contains data for body visualization; data is defined in special list / dictionary structure

DESCRIPTION of ObjectRigidBody

The following output variables are available as OutputVariableType in sensors, Get…Output() and other functions:

  • Position: \(\LU{0}{{\mathbf{p}}}\cConfig(\pLocB) = \LU{0}{\pRef}\cConfig + \LU{0}{\pRef}\cRef + \LU{0b}{\Rot}\pLocB\)
    global position vector of body-fixed point given by local position vector \(\pLocB\)
  • Displacement: \(\LU{0}{{\mathbf{u}}}\cConfig + \LU{0b}{\Rot}\pLocB\)
    global displacement vector of body-fixed point given by local position vector \(\pLocB\)
  • Velocity: \(\LU{0}{{\mathbf{v}}}\cConfig(\pLocB) = \LU{0}{\dot{\mathbf{u}}}\cConfig + \LU{0b}{\Rot}(\LU{b}{\tomega} \times \pLocB\cConfig)\)
    global velocity vector of body-fixed point given by local position vector \(\pLocB\)
  • VelocityLocal: \(\LU{b}{{\mathbf{v}}}\cConfig(\pLocB) = \LU{b0}{\Rot} \LU{0}{{\mathbf{v}}}\cConfig(\pLocB)\)
    local (body-fixed) velocity vector of body-fixed point given by local position vector \(\pLocB\)
  • RotationMatrix: \(\mathrm{vec}(\LU{0b}{\Rot})=[A_{00},\,A_{01},\,A_{02},\,A_{10},\,\ldots,\,A_{21},\,A_{22}]\cConfig\tp\)
    vector with 9 components of the rotation matrix (row-major format)
  • Rotation:
    vector with 3 components of the Euler angles in xyz-sequence (R=Rx*Ry*Rz), recomputed from rotation matrix
  • AngularVelocity: \(\LU{0}{\tomega}\cConfig\)
    angular velocity of body
  • AngularVelocityLocal: \(\LU{b}{\tomega}\cConfig\)
    local (body-fixed) 3D velocity vector of node
  • Acceleration: \(\LU{0}{{\mathbf{a}}}\cConfig(\pLocB) = \LU{0}{\ddot{\mathbf{u}}} + \LU{0}{\talpha} \times (\LU{0b}{\Rot} \pLocB) + \LU{0}{\tomega} \times ( \LU{0}{\tomega} \times(\LU{0b}{\Rot} \pLocB))\)
    global acceleration vector of body-fixed point given by local position vector \(\pLocB\)
  • AccelerationLocal: \(\LU{b}{{\mathbf{a}}}\cConfig(\pLocB) = \LU{b0}{\Rot} \LU{0}{{\mathbf{a}}}\cConfig(\pLocB)\)
    local (body-fixed) acceleration vector of body-fixed point given by local position vector \(\pLocB\)
  • AngularAcceleration: \(\LU{0}{\talpha}\cConfig\)
    angular acceleration vector of body
  • AngularAccelerationLocal: \(\LU{b}{\talpha}\cConfig = \LU{b0}{\Rot} \LU{0}{\talpha}\cConfig\)
    local angular acceleration vector of body

Definition of quantities

intermediate variables
symbol
description
inertia tensor
\(\LU{b}{{\mathbf{J}}} = \LU{b}{\mr{J_{xx}}{J_{xy}}{J_{xz}} {J_{xy}}{J_{yy}}{J_{yz}} {J_{xz}}{J_{yz}}{J_{zz}}}\)
symmetric inertia tensor, based on components of \(\LU{b}{{\mathbf{j}}_6}\), in body-fixed (local) coordinates and w.r.t.body’s reference point
reference coordinates
\({\mathbf{q}}\cRef = [\pRef\tp\cRef,\,\tpsi\tp\cRef]\tp\)
defines reference configuration, DIFFERENT meaning from body’s reference point!
(relative) current coordinates
\({\mathbf{q}}\cCur = [\pRef\tp\cCur,\,\tpsi\tp\cCur]\tp\)
unknowns in solver; relative to the reference coordinates; current coordinates at initial configuration = initial coordinates \({\mathbf{q}}\cIni\)
current velocity coordinates
\(\dot {\mathbf{q}}\cCur = [{\mathbf{v}}\tp\cCur,\,\dot \tpsi\tp\cCur]\tp = [\dot {\mathbf{p}}\tp\cCur,\,\dot \ttheta\tp\cCur]\tp\)
current velocity coordinates
body’s reference point
\(\pRefG\cConfig + \pRefG\cRef = \LU{0}{{\mathbf{p}}}(n_0)\cConfig\)
position of body’s reference point provided by node \(n_0\) in any configuration except for reference; if \(\LU{b}{{\mathbf{b}}_{COM}}==[0,\;0,\;0]\tp\), this position becomes equal to the COM position
reference body’s reference point
\(\pRefG\cRef = \LU{0}{{\mathbf{p}}}(n_0)\cRef\)
position of body’s reference point in reference configuration
body’s reference point displacement
\(\LU{0}{{\mathbf{u}}}\cConfig = \pRefG\cConfig = [q_0,\;q_1,\;q_2]\cConfig\tp = \LU{0}{{\mathbf{u}}}(n_0)\cConfig\)
displacement of body’s reference point which is provided by node \(n_0\) in any configuration
body’s reference point velocity
\(\LU{0}{{\mathbf{v}}}\cConfig = \dot \pRefG\cConfig = [\dot q_0,\;\dot q_1,\;\dot q_2]\cConfig\tp = \LU{0}{{\mathbf{v}}}(n_0)\cConfig\)
velocity of body’s reference point which is provided by node \(n_0\) in any configuration
body’s reference point acceleration
\(\LU{0}{{\mathbf{a}}}\cConfig = [\ddot q_0,\;\ddot q_1,\;\ddot q_2]\cConfig\tp\)
acceleration of body’s reference point which is provided by node \(n_0\) in any configuration
rotation coordinates
\(\ttheta_{\mathrm{config}} = \tpsi(n_0)\cRef + \tpsi(n_0)\cConfig\)
(total) rotation parameters of body as provided by node \(n_0\) in any configuration
rotation parameters
\(\ttheta_{\mathrm{config}} = \tpsi(n_0)\cRef + \tpsi(n_0)\cConfig\)
(total) rotation parameters of body as provided by node \(n_0\) in any configuration
body rotation matrix
\(\LU{0b}{\Rot}\cConfig = \LU{0b}{\Rot}(n_0)\cConfig\)
rotation matrix which transforms local to global coordinates as given by node
local position
\(\pLocB = [\LU{b}{b_0},\,\LU{b}{b_1},\,\LU{b}{b_2}]\tp\)
local position as used by markers or sensors
angular velocity
\(\LU{0}{\tomega}\cConfig = \LU{0}{[\omega_0(n_0),\,\omega_1(n_0),\,\omega_2(n_0)]}\cConfig\tp\)
global angular velocity of body as provided by node \(n_0\) in any configuration
local angular velocity
\(\LU{b}{\tomega}\cConfig\)
local angular velocity of body as provided by node \(n_0\) in any configuration
body angular acceleration
\(\LU{0}{\talpha}\cConfig = \LU{0}{\dot \tomega}\cConfig\)
angular acceleratoin of body as provided by node \(n_0\) in any configuration
applied forces
\(\LU{0}{{\mathbf{f}}}_a = [f_0,\;f_1,\;f_2]\tp\)
calculated from loads, connectors, …
applied torques
\(\LU{0}{\ttau}_a = [\tau_0,\;\tau_1,\;\tau_2]\tp\)
calculated from loads, connectors, …
constraint reaction forces
\(\LU{0}{{\mathbf{f}}}_\lambda = [f_{\lambda 0},\;f_{\lambda 1},\;f_{\lambda 2}]\tp\)
calculated from joints or constraint)
constraint reaction torques
\(\LU{0}{\ttau}_\lambda = [\tau_{\lambda 0},\;\tau_{\lambda 1},\;\tau_{\lambda 2}]\tp\)
calculated from joints or constraints

Rotation parametrization

The equations of motion of the rigid body build upon a specific parameterization of the rigid body coordinates. Rigid body coordinates are defined by the underlying node given by nodeNumber \(n0\). Appropriate nodes are

  • NodeRigidBodyEP (Euler parameters)

  • NodeRigidBodyRxyz (Euler angles / Tait Bryan angles)

  • NodeRigidBodyRotVecLG (Rotation vector with Lie group integration option)

Note that all operations for rotation parameters, such as the computation of the rotation matrix, must be performed with the rotation parameters \(\ttheta\), see table above, which are the sum of reference and current coordinates.

The angular velocity in body-fixed coordinates is related to the rotation parameters by means of a matrix \(\LU{b}{{\mathbf{G}}_{rp}}\),

(46)\[\LU{b}{\tomega} = \LU{b}{{\mathbf{G}}_{rp}} \dot \ttheta = \LU{b}{{\mathbf{G}}_{rp}} \dot \tpsi ,\]

and is specific for any rotation parametrization \(rp\). The angular velocity in global coordinates is related to the rotation parameters by means of a matrix \(\LU{0}{{\mathbf{G}}_{rp}}\),

(47)\[\LU{0}{\tomega} = \LU{0}{{\mathbf{G}}_{rp}} \dot \ttheta.\]

The local angular accelerations follow as

(48)\[\LU{b}{\talpha} = \LU{b}{\dot \tomega}= \LU{b}{{\mathbf{G}}_{rp}} \ddot \ttheta + \LU{b}{\dot {\mathbf{G}}_{rp}} \dot \ttheta ,\]

remember that derivatives for angular velocities can also be done in the local frame. In case of Euler parameters and the Lie-group rotation vector we find that \(\LU{b}{\dot {\mathbf{G}}_{rp}} \dot \ttheta = \Null\).

Equations of motion for COM

The equations of motion for a rigid body, the so-called Newton-Euler equations, can be written for the special case of the reference point \(=\) COM and split for translations and rotations, using a coordinate-free notation,

(49)\[\mp{m \mathbf{I}_{3 \times 3}}{\Null}{\Null}{{\mathbf{J}}} \vp{{\mathbf{a}}_{COM}}{\talpha} = \vp{\Null}{-\tilde \tomega {\mathbf{J}} \tomega} + \vp{{\mathbf{f}}_a}{\ttau_a} + \vp{{\mathbf{f}}_\lambda}{\ttau_\lambda}\]

with the \(3\times 3\) unit matrix \(\mathbf{I}_{3 \times 3}\) and forces \({\mathbf{f}}\) resp.torques \(\ttau\) as discribed in the table above. A change of the reference point, using the vector \({\mathbf{b}}_{COM}\) from the body’s reference point \({\mathbf{p}}\) to the COM position, is simple by replacing COM accelerations using the common relation known from Euler

\[{\mathbf{a}}_{COM} = {\mathbf{a}} + \tilde \talpha {\mathbf{b}}_{COM} + \tilde \tomega \tilde \tomega {\mathbf{b}}_{COM} ,\]

which is inserted into the first line of Eq. (49). Additionally, the second line of Eq. (49)(second Euler equation related to rate of angular momentum) is rewritten for an arbitrary reference point, \({\mathbf{b}}_{COM}\) denoting the vector from the body reference point to COM, using the well known relation

\[m \tilde {\mathbf{b}}_{COM} \talpha + {\mathbf{J}} \talpha + \tilde \tomega {\mathbf{J}} \tomega = \ttau_a + \ttau_\lambda\]

Equations of motion for arbitrary reference point

This immediately leads to the equations of motion for the rigid body with respect to an arbitrary reference point (\(\neq\) COM), see e.g.(page 258ff.), which have the general coordinate-free form

(50)\[\mp{m \mathbf{I}_{3 \times 3}}{-m \tilde {\mathbf{b}}_{COM}}{m \tilde {\mathbf{b}}_{COM}}{{\mathbf{J}}} \vp{{\mathbf{a}}}{\talpha} = \vp{-m \tilde \tomega \tilde \tomega {\mathbf{b}}_{COM} }{-\tilde \tomega {\mathbf{J}} \tomega} + \vp{{\mathbf{f}}_a}{\ttau_a} + \vp{{\mathbf{f}}_\lambda}{\ttau_\lambda} ,\]

in which \({\mathbf{J}}\) is the inertia tensor w.r.t.the chosen reference point (which has local coordinates \(\LU{b}{[0,0,0]\tp}\)). Eq. (50) can be written in the global frame (0),

(51)\[\mp{m \mathbf{I}_{3 \times 3}}{-m \LU{0}{\tilde {\mathbf{b}}_{COM}}} {m \LU{0}{\tilde {\mathbf{b}}_{COM}}}{\LU{0}{{\mathbf{J}}}} \vp{\LU{0}{{\mathbf{a}}}}{\LU{0}{\talpha}} = \vp{-m \LU{0}{\tilde \tomega} \LU{0}{\tilde \tomega} \LU{0}{{\mathbf{b}}_{COM}} } {-\LU{0}{\tilde \tomega} \LU{0}{{\mathbf{J}}} \LU{0}{\tomega}} + \vp{\LU{0}{{\mathbf{f}}_a}}{\LU{0}{\ttau_a}} + \vp{\LU{0}{{\mathbf{f}}_\lambda}}{\LU{0}{\ttau_\lambda}} .\]

Expressing the translational part (first line) of Eq. (51) in the global frame (0), using local coordinates (b) for quantities that are constant in the body-fixed frame, \(\LU{b}{{\mathbf{J}}}\) and \(\LU{b}{{\mathbf{b}}_{COM}}\), thus expressing also the angular velocity \(\LU{b}{\tomega}\) in the body-fixed frame, applying Eq. (46) and Eq. (48), and using the relations

\[\begin{split}\LU{0}{\tilde \tomega} \LU{0}{\tilde \tomega} \LU{0}{{\mathbf{b}}_{COM}} &=& \LU{0b}{\Rot} \LU{b}{\tilde \tomega} \LU{b}{\tilde \tomega} \LU{b}{{\mathbf{b}}_{COM}} = - \LU{0b}{\Rot} \LU{b}{\tilde \tomega} \LU{b}{\tilde {\mathbf{b}}_{COM}} \LU{b}{\tomega} = -\LU{0b}{\Rot} \LU{b}{\tilde \tomega} \LU{b}{\tilde {\mathbf{b}}_{COM}} \LU{b}{{\mathbf{G}}_{rp}} \dot \ttheta , \\ -m \LU{0}{\tilde {\mathbf{b}}_{COM}} \LU{0}{\tilde \talpha} &=& -m \LU{0b}{\Rot} \LU{b}{\tilde {\mathbf{b}}_{COM}} \LU{b}{\tilde \talpha} = -m \LU{0b}{\Rot} \LU{b}{\tilde {\mathbf{b}}_{COM}} \left( \LU{b}{{\mathbf{G}}_{rp}} \ddot \ttheta + \LU{b}{\dot {\mathbf{G}}_{rp}} \dot \ttheta \right) ,\end{split}\]

we obtain

(52)\[\begin{split}&&\mp{m \mathbf{I}_{3 \times 3}} {-m \LU{0b}{\Rot} \LU{b}{\tilde {\mathbf{b}}_{COM}}\LU{b}{{\mathbf{G}}_{rp}}} {m \LU{b}{{\mathbf{G}}_{rp}\tp} \LU{b}{\tilde {\mathbf{b}}_{COM}}\LU{0b}{\Rot\tp}} {\LU{b}{{\mathbf{G}}_{rp}\tp}\LU{b}{{\mathbf{J}}}\LU{b}{{\mathbf{G}}_{rp}}} \vp{\LU{0}{{\mathbf{a}}}}{\ddot \ttheta} \nonumber \\ &&= \vp{m \LU{0b}{\Rot} \LU{b}{\tilde \tomega} \LU{b}{\tilde {\mathbf{b}}_{COM}} \LU{b}{\tomega} + m \LU{0b}{\Rot} \LU{b}{\tilde {\mathbf{b}}_{COM}}\LU{b}{\dot {\mathbf{G}}_{rp}} \dot \ttheta} {-\LU{b}{{\mathbf{G}}_{rp}\tp}\LU{b}{\tilde \tomega} \LU{b}{{\mathbf{J}}} \LU{b}{\tomega} - \LU{b}{{\mathbf{G}}_{rp}\tp} \LU{b}{{\mathbf{J}}} \LU{b}{\dot {\mathbf{G}}_{rp}} \dot \ttheta} + \vp{\LU{0}{{\mathbf{f}}}_a}{\LU{0}{{\mathbf{G}}_{rp}\tp}\LU{0}{\ttau}_a} + \vp{\LU{0}{{\mathbf{f}}}_\lambda}{{\mathbf{f}}_{\theta,\lambda}}\end{split}\]

with constraint reaction forces \({\mathbf{f}}_{\theta,\lambda}\) for the rotation parameters. Note that the last line has been pre-multiplied with \(\LU{b}{{\mathbf{G}}_{rp}\tp}\) (in order to make the mass matrix symmetric) and that \(\LU{b}{\dot {\mathbf{G}}_{rp}} \dot \ttheta = \Null\) in case of Euler parameters and the Lie-group rotation vector .

Euler parameters

In case of Euler parameters, a constraint equation is automatically added, reading for the index 3 case

(53)\[g_\theta(\ttheta) = \theta_0^2 + \theta_1^2 + \theta_2^2 + \theta_3^2 - 1 = 0\]

and for the index 2 case

(54)\[\dot g_\theta(\ttheta) = 2 \theta_0 \dot \theta_0 + 2 \theta_1 \dot \theta_1 + 2 \theta_2 \dot \theta_2 + 2 \theta_3 \dot \theta_3 = 0\]

Given a Lagrange parameter (algebraic variable) \(\lambda_\theta\) related to the Euler parameter constraint (53), the constraint reaction forces in Eq. (52) then read

\[{\mathbf{f}}_{\theta,\lambda} = \frac{\partial g_\theta}{\ttheta\tp} \lambda_\theta = [2\theta_0,\; 2\theta_1,\; 2\theta_2,\; 2\theta_3]\tp\]

Userfunction: graphicsDataUserFunction(mbs, itemNumber)

A user function, which is called by the visualization thread in order to draw user-defined objects. The function can be used to generate any BodyGraphicsData, see Section GraphicsData. Use graphicsDataUtilities functions, see Section Module: graphicsDataUtilities, to create more complicated objects. Note that graphicsDataUserFunction needs to copy lots of data and is therefore inefficient and only designed to enable simpler tests, but not large scale problems.

For an example for graphicsDataUserFunction see ObjectGround, Section ObjectGround.

arguments / return
type or size
description
mbs
MainSystem
provides reference to mbs, which can be used in user function to access all data of the object
itemNumber
Index
integer number of the object in mbs, allowing easy access
returnValue
BodyGraphicsData
list of GraphicsData dictionaries, see Section GraphicsData

For creating a ObjectRigidBody, there is a rigidBodyUtilities function AddRigidBody, see Section Function: AddRigidBody, which simplifies the setup of a rigid body significantely!

Relevant Examples and TestModels with weblink:

The web version may not be complete. For details, consider also the Exudyn PDF documentation : theDoc.pdf