heavyTop.py

You can view and download this file on Github: heavyTop.py

  1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  2# This is an EXUDYN example
  3#
  4# Details:  Heavy top example
  5#           Refs.:  Terze, Z., Müller, A., Zlatar, D.: Singularity-free time integration of rotational quaternions using non-redundant ordinary differential equations. Multibody System Dynamics 38(3),201–225 (2016)
  6#
  7# Author:   Johannes Gerstmayr
  8# Date:     2020-02-02
  9#
 10# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
 11#
 12#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 13
 14import exudyn as exu
 15from exudyn.utilities import *
 16
 17import numpy as np
 18
 19useGraphics = True #without test
 20#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 21#you can erase the following lines and all exudynTestGlobals related operations if this is not intended to be used as TestModel:
 22try: #only if called from test suite
 23    from modelUnitTests import exudynTestGlobals #for globally storing test results
 24    useGraphics = exudynTestGlobals.useGraphics
 25except:
 26    class ExudynTestGlobals:
 27        pass
 28    exudynTestGlobals = ExudynTestGlobals()
 29#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 30
 31SC = exu.SystemContainer()
 32mbs = SC.AddSystem()
 33
 34#exu.Print('EXUDYN version='+exu.GetVersionString())
 35
 36#background
 37#rect = [-0.1,-0.1,0.1,0.1] #xmin,ymin,xmax,ymax
 38#background0 = {'type':'Line', 'color':[0.1,0.1,0.8,1], 'data':[rect[0],rect[1],0, rect[2],rect[1],0, rect[2],rect[3],0, rect[0],rect[3],0, rect[0],rect[1],0]} #background
 39color = [0.1,0.1,0.8,1]
 40r = 0.5 #radius
 41L = 1   #length
 42
 43
 44background0 = GraphicsDataRectangle(-L,-L,L,L,color)
 45oGround=mbs.AddObject(ObjectGround(referencePosition= [0,0,0], visualization=VObjectGround(graphicsData= [background0])))
 46
 47#heavy top is fixed at [0,0,0] (COM of simulated body), but force is applied at [0,1,0] (COM of real top)
 48m = 15
 49Jxx=0.234375
 50Jyy=0.46875
 51Jzz=0.234375
 52#yS = 1 #distance from
 53
 54#vector to COM, where force is applied
 55rp = [0.,1.,0.]
 56#rpt = np.array(Skew(rp))
 57rpt = Skew(rp)
 58Fg = [0,0,-m*9.81]
 59#inertia tensor w.r.t. fixed point
 60JFP = np.diag([Jxx,Jyy,Jzz]) - m*np.dot(rpt,rpt)
 61#exu.Print(JFP)
 62
 63omega0 = [0,150,-4.61538] #arbitrary initial angular velocity
 64p0 = [0,0,0] #reference position
 65v0 = [0.,0.,0.] #initial translational velocity
 66
 67nodeTypeList = [exu.NodeType.RotationEulerParameters, exu.NodeType.RotationRxyz]
 68
 69sAngVel=[]
 70sPos=[]
 71sCoords=[]
 72for nodeType in nodeTypeList:
 73
 74    nRB = 0
 75    if nodeType == exu.NodeType.RotationEulerParameters:
 76        ep0 = eulerParameters0 #no rotation
 77        ep_t0 = AngularVelocity2EulerParameters_t(omega0, ep0)
 78        #exu.Print(ep_t0)
 79
 80        nRB = mbs.AddNode(NodeRigidBodyEP(referenceCoordinates=p0+ep0, initialVelocities=v0+list(ep_t0)))
 81    else: #Rxyz
 82        rot0 = [0,0,0] #no rotation
 83        #omega0 = [10,0,0]
 84        rot_t0 = AngularVelocity2RotXYZ_t(omega0, rot0)
 85        #exu.Print('rot_t0=',rot_t0)
 86
 87        nRB = mbs.AddNode(NodeRigidBodyRxyz(referenceCoordinates=p0+rot0, initialVelocities=v0+list(rot_t0)))
 88
 89    oGraphics = GraphicsDataOrthoCube(-r/2,-L/2,-r/2, r/2,L/2,r/2, [0.1,0.1,0.8,1])
 90    oRB = mbs.AddObject(ObjectRigidBody(physicsMass=m, physicsInertia=[JFP[0][0], JFP[1][1], JFP[2][2], JFP[1][2], JFP[0][2], JFP[0][1]],
 91                                        nodeNumber=nRB, visualization=VObjectRigidBody(graphicsData=[oGraphics])))
 92
 93    mMassRB = mbs.AddMarker(MarkerBodyPosition(bodyNumber = oRB, localPosition=[0,1,0])) #this is the real COM
 94    mbs.AddLoad(Force(markerNumber = mMassRB, loadVector=Fg))
 95
 96    nPG=mbs.AddNode(PointGround(referenceCoordinates=[0,0,0])) #for coordinate constraint
 97    mCground = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nPG, coordinate=0)) #coordinate number does not matter
 98
 99    mC0 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nRB, coordinate=0)) #ux
100    mC1 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nRB, coordinate=1)) #uy
101    mC2 = mbs.AddMarker(MarkerNodeCoordinate(nodeNumber = nRB, coordinate=2)) #uz
102    mbs.AddObject(CoordinateConstraint(markerNumbers=[mCground, mC0]))
103    mbs.AddObject(CoordinateConstraint(markerNumbers=[mCground, mC1]))
104    mbs.AddObject(CoordinateConstraint(markerNumbers=[mCground, mC2]))
105
106    if useGraphics:
107        sAdd = ''
108        if nodeType == exu.NodeType.RotationRxyz:
109            sAdd = 'Rxyz' #avoid that both sensor file names are identical
110        #mbs.AddSensor(SensorNode(nodeNumber=nRB, storeInternal=True,#fileName='solution/sensorRotation'+sAdd+'.txt', outputVariableType=exu.OutputVariableType.Rotation))
111        sAngVel+=[mbs.AddSensor(SensorNode(nodeNumber=nRB, storeInternal=True, #fileName='solution/sensorAngVelLocal'+sAdd+'.txt',
112                                           outputVariableType=exu.OutputVariableType.AngularVelocityLocal))]
113        #mbs.AddSensor(SensorNode(nodeNumber=nRB, fileName='solution/sensorAngVel'+sAdd+'.txt', outputVariableType=exu.OutputVariableType.AngularVelocity))
114
115        sPos+=[mbs.AddSensor(SensorBody(bodyNumber=oRB, storeInternal=True, #fileName='solution/sensorPosition'+sAdd+'.txt',
116                                        localPosition=rp, outputVariableType=exu.OutputVariableType.Position))]
117        sCoords+=[mbs.AddSensor(SensorNode(nodeNumber=nRB, storeInternal=True, #fileName='solution/sensorCoordinates'+sAdd+'.txt',
118                                           outputVariableType=exu.OutputVariableType.Coordinates))]
119
120#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
121mbs.Assemble()
122#exu.Print(mbs)
123
124simulationSettings = exu.SimulationSettings() #takes currently set values or default values
125
126fact = 2000
127simulationSettings.timeIntegration.numberOfSteps = 1*fact
128simulationSettings.timeIntegration.endTime = 0.0001*fact
129#simulationSettings.solutionSettings.solutionWritePeriod = simulationSettings.timeIntegration.endTime/fact
130simulationSettings.solutionSettings.sensorsWritePeriod = simulationSettings.timeIntegration.endTime/fact
131
132simulationSettings.timeIntegration.verboseMode = 1
133
134simulationSettings.timeIntegration.generalizedAlpha.useIndex2Constraints = True
135simulationSettings.timeIntegration.generalizedAlpha.useNewmark = True
136#simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 0.6 #0.6 works well
137
138if useGraphics:
139    exu.StartRenderer()
140    mbs.WaitForUserToContinue()
141
142mbs.SolveDynamic(simulationSettings)
143
144if useGraphics:
145    SC.WaitForRenderEngineStopFlag()
146    exu.StopRenderer() #safely close rendering window!
147
148sol = mbs.systemData.GetODE2Coordinates();
149solref = mbs.systemData.GetODE2Coordinates(configuration=exu.ConfigurationType.Reference);
150#exu.Print('sol=',sol)
151u = 0
152for i in range(4):
153    u += abs(sol[3+i]+solref[3+i]); #Euler parameters
154
155for i in range(3):
156    u += abs(sol[7+3+i]+solref[7+3+i]); #Euler angles Rxyz
157
158exu.Print('solution of heavy top =',u)
159# EP ref solution MATLAB: at t=0.2
160#  gen alpha (sigma=0.98, h=1e-4): -0.70813,0.43881,0.54593,0.089251 ==> abs sum=1.782121
161#  RK4:                            -0.70828,0.43878,0.54573,0.0894   ==> abs sum=1.78219
162#Exudyn: (index2)                  -1.70824157  0.43878143  0.54578152   0.08937154
163
164#RotXYZ solution EXUDYN:           29.86975964,-0.7683481513,-1.002841906
165
166exudynTestGlobals.testError = u - (33.423125751773306) #2020-02-04 added RigidRxyz: (33.423125751773306) 2020-02-03: (1.7821760506326125)
167exudynTestGlobals.testResult = u
168
169
170
171#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
172#compute exact solution:
173
174if useGraphics:
175
176    fileRef = '../../../docs/verification/HeavyTopSolution/HeavyTop_TimeEulerParameter_RK4.txt'
177    mbs.PlotSensor(sCoords[0], components=[3,4,5,6], labels=['theta 0','theta 1','theta 2','theta 3'],
178               closeAll=True, offsets=[1.,0,0,0], yLabel='Euler parameters') #offsets for reference coords
179    mbs.PlotSensor(fileRef, components=[0,1,2,3], labels=['theta 0 ref','theta 1 ref','theta 2 ref','theta 3 ref'],
180               colorCodeOffset=7, newFigure=False)
181
182    mbs.PlotSensor(sAngVel[0], components=[0,1,2], labels=['omega X','omega Y','omega Z'])
183    mbs.PlotSensor(sPos[0], components=[0,1,2])
184
185    # if False:
186    #     import matplotlib.pyplot as plt
187    #     import matplotlib.ticker as ticker
188    #     plt.close("all")
189
190    #     [fig1, ax1] = plt.subplots()
191    #     [fig2, ax2] = plt.subplots()
192    #     [fig3, ax3] = plt.subplots()
193    #     data1 = np.loadtxt('solution/sensorCoordinates.txt', comments='#', delimiter=',')
194    #     ax1.plot(data1[:,0], data1[:,1+3]+1, 'r-', label='theta 0')  #1, because coordinates to not include ref. values
195    #     ax1.plot(data1[:,0], data1[:,2+3], 'g-', label='theta 1')
196    #     ax1.plot(data1[:,0], data1[:,3+3], 'b-', label='theta 2')
197    #     ax1.plot(data1[:,0], data1[:,4+3], 'k-', label='theta 3')
198
199    #     data1 = np.loadtxt('../../../docs/verification/HeavyTopSolution/HeavyTop_TimeEulerParameter_RK4.txt', comments='#', delimiter=',')
200    #     ax1.plot(data1[:,0], data1[:,1], 'r:', label='theta 0 ref')  #1, because coordinates to not include ref. values
201    #     ax1.plot(data1[:,0], data1[:,2], 'g:', label='theta 1 ref')
202    #     ax1.plot(data1[:,0], data1[:,3], 'b:', label='theta 2 ref')
203    #     ax1.plot(data1[:,0], data1[:,4], 'k:', label='theta 3 ref')
204    #     ax1.set_ylabel("Euler parameter")
205
206    #     data2 = np.loadtxt('solution/sensorAngVel.txt', comments='#', delimiter=',')
207    #     ax2.plot(data2[:,0], data2[:,1], 'r-', label='omega X')
208    #     ax2.plot(data2[:,0], data2[:,2], 'g-', label='omega Y')
209    #     ax2.plot(data2[:,0], data2[:,3], 'b-', label='omega Z')
210
211    #     data3 = np.loadtxt('solution/sensorPosition.txt', comments='#', delimiter=',')
212    #     ax3.plot(data3[:,0], data3[:,1], 'r-', label='position X')
213    #     ax3.plot(data3[:,0], data3[:,2], 'g-', label='position Y')
214    #     ax3.plot(data3[:,0], data3[:,3], 'b-', label='position Z')
215
216    #     axList=[ax1,ax2,ax3]
217    #     figList=[fig1, fig2, fig3]
218
219    #     for ax in axList:
220    #         ax.grid(True, 'major', 'both')
221    #         ax.xaxis.set_major_locator(ticker.MaxNLocator(10))
222    #         ax.yaxis.set_major_locator(ticker.MaxNLocator(10))
223    #         ax.set_xlabel("time (s)")
224    #         ax.legend()
225
226    #     ax2.set_ylabel("angular velocity (rad/s)")
227    #     ax3.set_ylabel("coordinate (m)")
228
229    #     for f in figList:
230    #         f.tight_layout()
231    #         f.show() #bring to front