ComputeSensitivitiesExample.py

You can view and download this file on Github: ComputeSensitivitiesExample.py

  1#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
  2# This is an EXUDYN example
  3#
  4# Details:  This example calculates the sensitivities of a mass-spring-damper-system
  5#           by varying mass, spring, ... and computing the forward/central difference
  6#           The output parameters used are the average absolute value of the displacement
  7#           and the static displacement
  8#
  9# Author:   Peter Manzl, based on code from Johannes Gerstmayr
 10# Date:     2022-02-10
 11#
 12# Copyright:This file is part of Exudyn. Exudyn is free software. You can redistribute it and/or modify it under the terms of the Exudyn license. See 'LICENSE.txt' for more details.
 13#
 14#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 15
 16import exudyn as exu
 17from exudyn.itemInterface import *
 18from exudyn.processing import ComputeSensitivities, PlotSensitivityResults
 19from exudyn.utilities import AddSensorRecorder
 20
 21import numpy as np #for postprocessing
 22
 23#this is the function which is repeatedly called from ComputeSensitivities
 24#parameterSet contains dictinary with varied parameters
 25def ParameterFunction(parameterSet):
 26    SC = exu.SystemContainer()
 27    mbs = SC.AddSystem()
 28
 29
 30    class P: pass #create 'namespace'
 31
 32    #default values
 33    P.L=0.5               #spring length (for drawing)
 34    P.mass = 1.6          #mass in kg
 35    P.spring = 4000       #stiffness of spring-damper in N/m
 36    P.damper = 8    #old: 8; damping constant in N/(m/s)
 37    P.u0=-0.08            #initial displacement
 38    P.v0=1                #initial velocity
 39    P.force =80               #force applied to mass
 40    P.computationIndex = 'Ref'
 41
 42    #update parameters:
 43    for key in parameterSet: #includes empty dict!
 44        setattr(P, key, parameterSet[key])
 45
 46
 47    x0= P.force/P.spring     #static displacement
 48
 49    #node for 3D mass point:
 50    n1=mbs.AddNode(Point(referenceCoordinates = [P.L,0,0],
 51                         initialCoordinates = [P.u0,0,0],
 52                         initialVelocities= [P.v0,0,0]))
 53
 54    #ground node
 55    nGround=mbs.AddNode(NodePointGround(referenceCoordinates = [0,0,0]))
 56
 57    #add mass point (this is a 3D object with 3 coordinates):
 58    massPoint = mbs.AddObject(MassPoint(physicsMass = P.mass, nodeNumber = n1))
 59
 60    #marker for ground (=fixed):
 61    groundMarker=mbs.AddMarker(MarkerNodeCoordinate(nodeNumber= nGround, coordinate = 0))
 62    #marker for springDamper for first (x-)coordinate:
 63    nodeMarker  =mbs.AddMarker(MarkerNodeCoordinate(nodeNumber= n1, coordinate = 0))
 64
 65    #spring-damper between two marker coordinates
 66    nC = mbs.AddObject(CoordinateSpringDamper(markerNumbers = [groundMarker, nodeMarker],
 67                                              stiffness = P.spring, damping = P.damper))
 68
 69    #add load:
 70    mbs.AddLoad(LoadCoordinate(markerNumber = nodeMarker,
 71                                             load = P.force))
 72    #add sensor:
 73    fileName = 'solution/paramVarDisplacement'+ str(P.computationIndex) +'.txt'#
 74    flagWriteFile = False
 75    if P.computationIndex == 'Ref': flagWriteFile = True
 76    sData = mbs.AddSensor(SensorObject(objectNumber=nC, fileName=fileName,
 77                               outputVariableType=exu.OutputVariableType.Force,
 78                               writeToFile=flagWriteFile))
 79
 80
 81    steps = 1000  #number of steps to show solution
 82    tEnd = 1    #end time of simulation
 83
 84    simulationSettings = exu.SimulationSettings()
 85    simulationSettings.solutionSettings.writeSolutionToFile = False
 86    simulationSettings.solutionSettings.sensorsWritePeriod = 5e-3  #output interval of sensors
 87    simulationSettings.timeIntegration.numberOfSteps = steps
 88    simulationSettings.timeIntegration.endTime = tEnd
 89
 90    simulationSettings.timeIntegration.generalizedAlpha.spectralRadius = 1 #no damping
 91    if not(flagWriteFile):
 92        sRecorder = AddSensorRecorder(mbs, sData, tEnd, simulationSettings.solutionSettings.sensorsWritePeriod, sensorOutputSize=1)
 93
 94    #exu.StartRenderer()              #start graphics visualization
 95    #mbs.WaitForUserToContinue()    #wait for pressing SPACE bar to continue
 96    mbs.Assemble()
 97
 98    #start solver:
 99    mbs.SolveDynamic(simulationSettings)
100
101
102
103    #+++++++++++++++++++++++++++++++++++++++++++++++++++++
104    #evaluate difference between reference and optimized solution
105    #reference solution:
106
107
108    if flagWriteFile:
109        data = np.loadtxt(fileName, comments='#', delimiter=',')
110    else:
111        data = mbs.variables['sensorRecord0']
112
113    avgPos = np.average(np.abs(data))
114    #+++++++++++++++++++++++++++++++++++++++++++++++++++++
115    #compute exact solution:
116    if False:
117        from matplotlib import plt
118
119        plt.close('all')
120        plt.plot(data[:,0], data[:,1], 'b-', label='displacement (m)')
121
122        ax=plt.gca() # get current axes
123        ax.grid(True, 'major', 'both')
124        ax.xaxis.set_major_locator(ticker.MaxNLocator(10))
125        ax.yaxis.set_major_locator(ticker.MaxNLocator(10))
126        plt.legend() #show labels as legend
127        plt.tight_layout()
128        plt.show()
129
130    return avgPos, x0
131
132
133
134#now perform the sensitivity analysis
135if __name__ == '__main__': #include this to enable parallel processing
136    import time
137    useMultiProcessing = exudyn
138    start_time = time.time()
139    n = [2, 2]
140    fVar = [1e-3, 1.5e-3, 1]
141    mRef = 1.5
142    kRef = 4000
143    [pList, valRef, valuesSorted, sensitivity] = ComputeSensitivities(parameterFunction=ParameterFunction,
144                                         parameters = {'mass': (mRef, fVar[0], n[0]),
145                                                       'spring': (kRef,fVar[1], n[1]),
146                                                       },
147                                         scaledByReference=False,
148                                         debugMode=True,
149                                         addComputationIndex=True,
150                                         useMultiProcessing=False,
151                                         showProgress=True,)
152
153    testResult = np.average(np.abs(sensitivity))
154    if True:
155        print("--- %s seconds ---" % (time.time() - start_time))
156        PlotSensitivityResults(valRef, valuesSorted, sensitivity, strYAxis=['avg. $|x|$', 'x0', ''])
157    else:
158        exu.Print('result of ConvexContactTest=',testResult)